Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Clin Toxicol (Phila) ; 60(5): 571-575, 2022 May.
Article in English | MEDLINE | ID: covidwho-1711284

ABSTRACT

Introduction: Avermectins are common antiparasitic drugs, derived from Streptomyces bacteria that exhibit activity against arthropods and nematodes. Ivermectin, an avermectin derivative, is used as a treatment for parasitic infections in humans and domesticated animals.Discussion: Ivermectin's mechanism of action involves binding to ligand-gated ion channel receptors including glutamate, GABA, and glycine, resulting in parasitic paralysis and death. Due to varying expression of these ion channel receptors in vertebrate species, ivermectin toxicity is rarely reported in mammals. Ivermectin is also a substrate for P-glycoprotein, which limits its neurological toxicity in humans. Genetic polymorphisms in P-glycoprotein or coadministration of P-glycoprotein inhibitors may increase the neurotoxicity of ivermectin. Other toxic effects of ivermectin after therapeutic oral use include edema, rash, headache, and ocular complaints. Most of these effects are mild and short in duration. Ivermectin exhibits antiviral effects in-vitro at very high concentrations. This has led to suggestions of ivermectin as a potential treatment for SARS-CoV-2 (COVID-19) infection, although the drug's pharmacokinetic parameters reduce the likelihood that high concentrations of the drug can be achieved in-vivo.Conclusion: Due to concern for adverse events, specifically neurotoxicity, as well as a paucity of supporting evidence, the use of ivermectin as a routine treatment or preventive measure for COVID-19 infection is not recommended at this time.


Subject(s)
COVID-19 Drug Treatment , Ivermectin , Animals , Antiparasitic Agents/therapeutic use , Antiparasitic Agents/toxicity , Antiviral Agents , Humans , Ivermectin/therapeutic use , Ivermectin/toxicity , Mammals , SARS-CoV-2
2.
Biophys Chem ; 278: 106677, 2021 11.
Article in English | MEDLINE | ID: covidwho-1363894

ABSTRACT

The SARS-CoV-2 pandemic has accelerated the study of existing drugs. The mixture of homologs called ivermectin (avermectin-B1a [HB1a] + avermectin-B1b [HB1b]) has shown antiviral activity against SARS-CoV-2 in vitro. However, there are few reports on the behavior of each homolog. We investigated the interaction of each homolog with promising targets of interest associated with SARS-CoV-2 infection from a biophysical and computational-chemistry perspective using docking and molecular dynamics. We observed a differential behavior for each homolog, with an affinity of HB1b for viral structures, and of HB1a for host structures considered. The induced disturbances were differential and influenced by the hydrophobicity of each homolog and of the binding pockets. We present the first comparative analysis of the potential theoretical inhibitory effect of both avermectins on biomolecules associated with COVID-19, and suggest that ivermectin through its homologs, has a multiobjective behavior.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , DNA Helicases/antagonists & inhibitors , Ivermectin/analogs & derivatives , alpha Karyopherins/antagonists & inhibitors , beta Karyopherins/antagonists & inhibitors , Animals , Antiviral Agents/pharmacology , Binding Sites , COVID-19/virology , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , DNA Helicases/chemistry , DNA Helicases/metabolism , Humans , Ivermectin/chemistry , Ivermectin/pharmacology , Kinetics , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Thermodynamics , alpha Karyopherins/chemistry , alpha Karyopherins/metabolism , beta Karyopherins/chemistry , beta Karyopherins/metabolism , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL